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Abstract Detection of Hg2+ in complex natural environ-
mental conditions is extremely challenging, and no entirely
successful methods currently exist. Here we report an easy-
to-prepare fluorescent sensor B3 with 2-aminophenol as
Hg2+ receptor, which exhibits selective fluorescence en-
hancement toward Hg2+ over other metal ions. Especially,
the fluorescence enhancement was unaffected by anions and
cations existing in environment and organism. Moreover,
B3 can detect Hg2+ in sulphide-rich environments without
cysteine, S2- or EDTA altering the fluorescence intensity.
Consequently, B3 is capable of distinguishing between safe
and toxic levels of Hg2+ in more complicated natural water
systems with detection limit ≤2 ppb.
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Introduction

Hg2+, a highly toxic heavy metal ion, seriously threatens many
environmental and biological systems [1]. Today, mercury is
present in daily life, such as in thermometers, batteries and
electronic equipment [2–4]. The misuse of these products can
lead to mercury leaks. Other sources such as volcanic emis-
sions, combustion of fossil fuels, especially mining [5], also
cause high concentrations of mercury in many environmental
compartments [6] and a number of human health problems [2,
7]. These environmental and biological problems have

prompted the development of methods for the detection and
quantification of mercury, especially in situations where con-
ventional techniques are not appropriate.

Recently, considerable efforts have been made to design
Hg2+ fluorescent sensors with high sensitivity and selectivity,
quick response time and easy signal detection. There are
fluorescent probes based on different inorganic nanoparticles
[8–13]. Main examples are organic molecules such as rhoda-
mine or 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BOD-
IPY) based fluorescent turn-on sensors [14–23], a ratiometric
fluorescent probe based on FRET [24, 25], a colorimetric
sensor based on ruthenium complexes [26] and chemodosim-
eters based on mercury ion-promoted hydrolysis [27, 28].
Since most of these sensors tended to make use of the thio-
philic property of mercury to design mercury ligands, they
often contain sulphur atoms in their ligands. However, some
mercapto containing biomolecules in organisms could form
stable complexes with Hg2+ [29], and there has been little
discussion of how to avoid interference from sulfide in organ-
isms or from sulfur-rich environments, preventing them from
being applicable in natural environmental conditions.

Therefore, we are still facing the challenge for the explo-
ration of new fluorescent turn-on probes with new, simpler
ligands applicable in environmental conditions. Due to
properties such as a large molar extinction coefficient (ε),
high fluorescence quantum yield (Φ) and insensitivity to
solvent polarity and pH, BODIPY-based dyes have been
used as efficient fluorescent sensors for different analytes
[30–35] including our two Hg2+ fluorescent sensors B1 [36]
and B2 [37]. Furthermore, 2-aminophenol has been proved
to form a stable complex with Hg2+ in ethanol solution [38].
Therefore, herein we report a highly selective and sensitive
fluorescence BODIPY-based turn-on sensor B3 for Hg2+, by
introducing the very simple Hg2+ ligand, aminophenol, into
BODIPY. In this molecule, -NH2 is on the para-phenyl
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substitute, which can cause more efficient photo-induced
electron transfer (PET) process from nitrogen to BODIPY.
The compound is easy to be obtained by two steps via
compound 2 and performs well in natural environmental
conditions without sulphur element interference.

Experimental

Materials and Apparatus

All the chemicals and solvents were of analytical quality. The
listed cations and anions were used in addition to Hg2+ to test
the specificity: Na+, K+, Ca2+, Cd2+, Co2+, Ni2+, Fe3+, Mg2+,
Pb2+, Ag+, Cu2+, Cr3+ and Zn2+; NO3

−, CH3COO
−, SCN−,

ClO4
−, CO3

2−, H2PO4
−, Cl−, and SO4

2−, respectively. All the
salts were then dissolved in distilled water. NMR spectra were
recorded on a VARIAN INOVA-400 spectrometer with chem-
ical shifts reported as ppm (in CDCl3, TMS as internal stan-
dard). Mass spectral determinations were made on a
HP1100LC/MSD mass spectrometer and a LC/Q-TOF MS
spectrometer. Fluorescence measurements were performed on
a VARIAN CARY Eclipse Fluorescence Spectrophotometer
(Serial No. FL0812-M018) and the slit width was 5 nm for
excitation and emission. Absorption spectra were measured
on Lambda 35 UV/vis spectrophotometer. The pH measure-
ments were recorded by PHS-SC instrument.

Φunk ¼ Φstd
Iunk=Aunkð Þ
Istd=Astd

nunk
nstd

� �2

ð1Þ

The fluorescence quantum yield was determined using
optically matching solutions of rhodamine6G (Φf00.94 in
ethanol) as standard at an excitation wavelength of 500 nm,
and the quantum yield is calculated using Eq. (1) [39] where
Φunk and Φstd are the radiative quantum yields of the sample
and the standard, Iunk and Istd are the integrated emission
intensities of the corrected spectra for the sample and the
standard, Aunk and Astd are the absorbances of the sample
and the standard at the excitation wavelength (500 nm in all
cases), and nunk and nstd are the indices of refraction of the
sample and the standard solutions, respectively. Excitation
and emission slit widths were modified to adjust the lumines-
cent intensity in a suitable range. All the spectroscopic meas-
urements were performed at least in triplicate and averaged.

Synthesis of Compound 2

2,4-dimethylpyrrole (190 mg, 2 mmol) and 3-hydroxy-4-nitro-
benzaldehyde (167mg, 1mmol) were dissolved in dry CH2Cl2
(150 mL) under nitrogen. One drop of trifluoroacetic acid
(TFA) was added, and the solution was stirred for 5 h at room
temperature. After the mixture was concentrated to 30 mL, a

solution of 2,3-dichloro-5,6-dicyanoquinone (DDQ, 442 mg,
2 mmol) in 10 mL of CH2Cl2 was added and stirring was
continued for 15min, followed by the addition of triethylamine
(2 mL) and BF3•OEt2 (4 mL). After stirring for another 45min,
the reaction mixture was washed with 50 mL water, extracted
with dichloromethane (3×20 mL). The extract was dried over
anhydrous magnesium sulfate and then concentrated under
vacuum. The product was purified by flash column chroma-
tography using petrol ether/ethyl acetate (5:1, v/v) as eluent,
yielding compound 2 as red solid (88 mg, 23%). 1H NMR
(400 MHz, CDCl3), δ:10.67(s, 1H), 8.26(d, 1H, J08.0 Hz),
7.18(s, 1H), 6.98(d, 1H, J08.0 Hz), 6.02(s, 2H), 2.56(s, 6H),
1.50(s, 6H); 13C NMR (100 MHz, CDCl3), δ: 156.75, 155.42,
144.88, 142.48, 137.64, 133.65, 130.21, 126.07, 121.82,
120.37, 29.70, 14.67; TOF MS(ES): m/z calcd for 384.1331
(M-H+), found: 384.1349.

Synthesis of Compound B3

Compound 2 (100 mg, 0.26 mmol) was dissolved in 10 mL
of methanol. H2O (5 mL) and Fe (500 mg, 8.9 mmol) were
added and the reaction mixture was heated to reflux. Hydro-
chloric acid in a methanol solution (2 mL, 0.6 mol L−1) was
added dropwise. The solution was refluxed for 3 h until
complete consumption of the starting material (TLC moni-
toring). After cooling to room temperature, filtration and
concentration at reduced pressure, the product was purified
by flash column chromatography using petrol ether/ethyl
acetate (4:1,v/v) as eluent, yielding B3 as red solid
(77 mg, 83%).1H NMR(400 MHz, CDCl3), δ: 6.91(d, 1H,
J08.0 Hz), 6.62(s, 1H), 6.56(d, 1H, J08.0 Hz), 6.04(s, 2H),
2.48(s, 6H), 1.58(s, 6H); 13C NMR (100 MHz, CDCl3), δ:
154.99, 144.36, 143.33, 142.09, 135.43, 131.86, 125.15,
120.94, 116.84, 114.57, 29.7, 14.57; TOF MS (ES): m/z
calcd for 354.1589(M-H+), found: 354.1592.

Results and Discussions

Synthese of B3

Scheme 1 outlines the synthetic route to B3. It was prepared in
two steps. The TFA catalyzed condensation reaction of 3-
hydroxy-4-nitrobenzaldehyde with 2,4-dimethylpyrrole gave
compound 2, which was reduced to give the target product B3
[40]. Both compounds were confirmed by TOF-MS and NMR.

Fluorescence Detection of Hg2+ in Ethanol-Water Solution

The fluorescence and absorption studies were conducted in
ethanol/HEPES buffer (20 mM HEPES, 100 mM NaNO3,
1:1(v/v), pH07.2). As expected, in the absence of Hg2+, B3
exhibited a very weak and characteristic BODIPY-like
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absorption at 495 nm with a corresponding emission maxi-
mum at 513 nm. The fluorescence quantum yield 0 0.3%,
indicative of efficient photo-induced electron transfer (PET)
quenching from the receptor to BODIPY fluorophore [41].

Upon addition of Hg2+, the fluorescence intensity increased
by over 20-fold (Fig. 1a) without any shift in absorption
spectrum (Fig. 1b). The saturation titration for B3 (inset
graph in Fig. 1a) reveals a 1:1 stoichiometry for the B3-
Hg2+ complex [42]. The dissociation constant, Kd 0 (7.78±
0.4)×10−6 M, was obtained by plotting the fluorescence
intensity (F/F0) against [Hg

2+] [43].
The nitrate salts of Hg2+, Na+, K+, Ca2+, Cd2+, Co2+,

Ni2+, Fe3+, Mg2+, Pb2+, Ag+, Cu2+, Cr3+ and Zn2+ ions were
used to evaluate the selectivity of metal ion binding proper-
ties of B3 (Fig. 2). As expected, B3 exhibited excellent
fluorescence selectivity towards Hg2+ over all other alkali
and alkaline earth metal ions, transition and heavy metal
ions, although a slight fluorescence enhancement occurred
with Ag+. The competition experiments were conducted in
the presence of Hg2+ mixed with metal ions at 50 μM
mentioned above (Fig. 3a). The fluorescence emission pro-
files were unaffected by other metal ions except for a slight
quenching by Ag+ and Cu2+.

The effect of anions must be considered when evaluating
the response of fluorescent metal ion sensors. Lippard’s
group has proposed that formation of an Hg-Cl bond or
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Scheme 1 Synthetic
procedures for B3
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Fig. 1 Emission a and absorption b of B3 (10 μM) to different
concentrations of Hg2+ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 20 μM,
the given concentrations correspond to the curves drawn from bottom
to top of the images) with excitation at 495 nm in ethanol/HEPES
buffer (20 mM HEPES, 100 mM NaNO3, 1:1, v/v, pH 7.2). Inset a:
saturation titration of B3 (10 μM) with Hg2+
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Fig. 2 Fluorescence spectra of B3 (10 μM) in the presence of different
metal ions (50 μM) in ethanol/HEPES buffer (20 mM HEPES,
100 mM NaNO3, 1:1, v/v, pH 7.2) solution. Excitation: 495 nm. Other
ions: Na+, K+, Ca2+, Cd2+, Co2+, Ni2+, Fe3+, Mg2+, Pb2+, Cu2+, Cr3+

and Zn2+
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strong ion-pairing will influence the fluorescence turn-on
degree in these systems [44–46]. Lee [47] and our group
[36] have also found that anions can control the fluores-
cence enhancement through formation of endo- or exo-
metal complexes with Hg2+. So we investigated the fluores-
cence response of B3 toward Hg2+ in the presence of sodi-
um salts of various anions such as NO3

−, CH3COO
−, SCN−,

ClO4
−, CO3

2−, H2PO4
−, Cl−, and SO4

2−. None of the anions
gave rise to interference (Fig. 3b) which suggest that B3 is
applicable in complicated environmental samples.

It is known that the pH-insensitivity of fluorescence in
near neutral and weakly acidic media is of importance for
environmental and biological analyses. The common disad-
vantage of PET-based sensors is the interference of a proton,
which also binds with the coordinate site, inhibits the PET
process and enhances the fluorescence. In this case, the
fluorescence intensity of free B3 reached a steady minimal
value when pH>5.0. The switching is reversible. This also
demonstrates a typical PET fluorescence on/off effect. The
resulting sigmoidal curve gives a pKa of B3 is 3.39 (Fig. 4).
This indicates that B3 can work in near neutral and weakly
acidic media, which is important for practical applications to
environmental and biological analysis.
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Fig. 3 a Fluorescence responses of B3 (10 μM) to Hg2+ (50 μM) in
the presence of selected metal ions (50 μM) in ethanol/HEPES buffer
(20 mM HEPES, 100 mM NaNO3, 1:1, v/v, pH 7.2) solution. b The
fluorescence responses of B3 (10 μM) containing 50 μM Hg2+ to the
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495 nm and emission was integrated from 500 to 600 nm
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Fig. 4 Dependence of the fluorescence intensity of free B3 on pH in
ethanol/HEPES buffer (20 mM HEPES, 100 mM NaNO3, 1:1, v/v,
pH 7.2) solution. [B3]010 μM, Excitation was provided at 495 nm and
emission was integrated from 500 to 600 nm
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Fig. 5 The changes of fluorescence intensity of B3 (5 μM) upon
addition of Hg2+ (0–12 ppb) in ethanol/HEPES buffer (20 mM HEPES,
100 mM NaNO3, 1:1, v/v, pH 7.2) solution
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For a fluorescent molecular sensor to be practically ap-
plicable, the detection limit is important. As seen in Fig. 5,
the fluorescence intensity of the B3 solution was proportion-
al to the amount of Hg2+ added in the range of ppb level
(detection limit ≤2 ppb) indicating that B3 can detect envi-
ronmentally relevant concentrations of Hg2+. B3 is much
more sensitive to Hg2+ than our previous sensors B1 and B2.

Fluorescence Detection of Hg2+ in Natural Water Samples

A variety of natural and anthropogenic environmental con-
taminants pose serious problems for human health and

ecology. Environmental application presents a unique set
of challenges and requires detailed studies of sensor perfor-
mance in the environmental samples [48]. Therefore, we
next proceeded to test the sensor on natural water samples.
All these studies were conducted on pure natural water
without any organic solvent. We chose samples from three
different sources: the seawater from Yellow Sea (Dalian,
China), pool water and tap water. The Environmental Pro-
tection Agency (U.S. EPA) standard for the limit of inor-
ganic Hg in industrial waste water is no more than 50 ppb
[49]. As shown in Fig. 6a, about 3.9-fold (SW), 4.5-fold
(PW), 2.9-fold (TW)enhancement of fluorescence intensity
were displayed when 50 ppb of Hg2+ was added in water
with B3, respectively. Furthermore, F/F0 in natural water
samples are linearly proportional to the amount of Hg2+

(Fig. 6b). The result shows that B3 is capable of distinguish-
ing between the safe and toxic levels of Hg2+ in more
complicated natural water systems.
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Fluorescent Detection of Hg2+ in Sulfur-Rich Environments

It was known that cysteine could form a stable complex with
Hg2+ [44–47]. Therefore, for the next detection of Hg2+ in
sulfur-rich environment, we investigated the effect of cyste-
ine on the detection of Hg2+ in buffer solutions. As a
comparison, we also investigated the effect of S2− and
EDTA.

As shown in Fig. 7a, when added Hg2+ (50 μM) into the
mixed solution of B3 (10 μM) and cysteine (50 μM), the
obvious fluorescence enhancement (blue bar) was observed,
which is very close to the enhancement induced by Hg2+

only (grey bar). When added S2− (50 μM) and EDTA
(50 μM) into the solution of B3-Hg2+, respectively
(Fig. 7b), the fluorescence enhancement only showed a
slight change, indicating that the complex B3-Hg2+ was
very stable and that the sensor B3 could detect Hg2+ in the
sulfur-rich environment.

Conclusions

We have demonstrated a BODIPY derivative B3 as a fluo-
rescence turn-on sensor for Hg2+. This sensor exhibits very
high selectivity and sensitivity for Hg2+ in the presence of
various metal ions and anions in the aqueous solution.
Moreover, it also performed well in natural conditions and
sulfur-rich environments. Due to these excellent properties,
B3 can be further applied for the detection of Hg2+ in really
environmental samples.
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